

Daniele Arcara

daniele.arcara@email.stvincent.edu

Overview

Idea

A Bridgeland Stability Condition (BSC) on a smooth projective variety X assigns the label of (semi)stable or **unstable** to each complex $E \in D^b(\operatorname{Coh} X) =: D(X)$ in a meaningful way.

Question

When is \mathcal{O}_S given the label semistable in a certain class of "divisorial" BSCs defined on surfaces? (this will characterize the stability of all line bundles)

Theorem 1

If the surface S has no curves C satisfying $C^2 < 0$, then \mathcal{O}_S is σ -stable for all $\sigma \in \operatorname{Stab}_{div}(S)$

Bridgeland Stability Conditions

General Setup

Let S be a smooth projective surface. A stability condition σ is a pair $\sigma = (Z, \mathcal{A})$ where...

- \mathcal{A} is a heart of D(S)
- $Z: K_{num}(S) \to \mathbb{C}$ is a group homomorphism satisfying three properties:
- 1 (Positivity) for all $0 \neq E \in A$, have $Z(E) \in \{ re^{i\pi} \mid r > 0, \ 0 < \varphi \leq 1 \}.$

We say $E \in \mathcal{A}$ is σ -(semi)stable if for all nontrivial $F \hookrightarrow E$ in \mathcal{A} we have $\varphi(E) > (\geq) \varphi(F)$.

- 2 (HN-Filtrations) objects $E \in \mathcal{A}$ have well-behaved filtrations in terms of σ -semistable objects
- **3 (Support Property)** images of object classes via Z do not accumulate at the origin

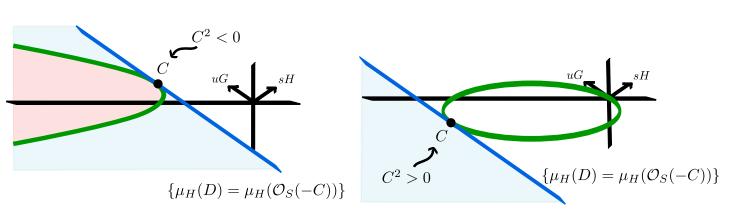
 $Stab(X) = \{all BSCs on X\}$ is a complex manifold [3].

Divisorial BSCs

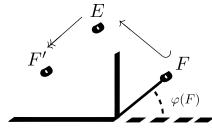
By [2], a choice of ample \mathbb{R} -divisor H and general \mathbb{R} -divisor D give a BSC $\sigma_{D,H}$ where

- $\mathcal{A}_{D,H}$ is the tilt of Coh X at the Mumford H-slope D.H • $Z_{D,H}(E) = -\int e^{-(D+iH)} \operatorname{ch}(E)$
- We denote the set of all such BSCs by $\operatorname{Stab}_{div}(S)$.

- In $\mathcal{S}_{G,H}$, the walls for \mathcal{O}_S (i.e. the set of BSCs σ with some $E \hookrightarrow \mathcal{O}_S$ and $\varphi(E) =$ $\varphi(\mathcal{O}_S)$) are quadric surfaces



The above pictures show that $\mathcal{O}_S(-C) \hookrightarrow$ \mathcal{O}_S and $\varphi(\mathcal{O}_S(-C)) \geq \varphi(\mathcal{O}_S)$ implies that $C^2 < 0$, i.e. that C is a **negative curve**.

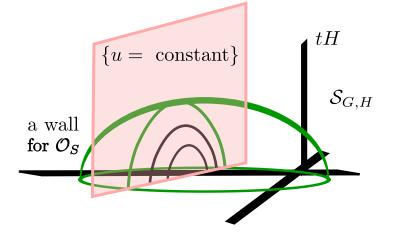


Bridgeland Stability of Line Bundles on Smooth Projective Surfaces

Walls in $\operatorname{Stab}_{div}(S)$

Slices of $\operatorname{Stab}_{div}(S)$

A choice of ample divisor H and divisor G such that H.G = 0 give us a 3-space $\mathcal{S}_{G,H} \subset \operatorname{Stab}_{div}(S)$ containing the stability conditions $\sigma_{D,A}$ where D = sH + uG and A = tH for $s, u \in \mathbb{R}$ and t > 0.



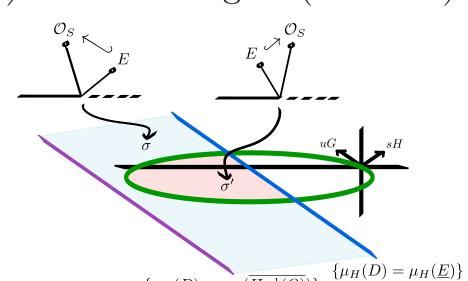
• inside the planes $\{u = \text{constant}\}$, the walls for \mathcal{O}_S are nested [4], so we may consider just the t = 0-plane to understand the position of walls for \mathcal{O}_S .

When does $E \hookrightarrow \mathcal{O}_S$?

• $E \hookrightarrow \mathcal{O}_S$ in $\mathcal{A}_{D,H}$ implies E is a sheaf, but $Q := \operatorname{coker} (E \hookrightarrow \mathcal{O}_S)$ may be a two-term complex $Q = Q_{-1} \to Q_0$.

There is a HN-filtration of Mumford Hsemistable sheaves for both E and $H^{-1}(Q)$.

- For $E \hookrightarrow \mathcal{O}_S$ at $\sigma_{D,tH}$, we require... $\mu_H(H^{-1}(Q)) \le \mu_H(D) < \mu_H(\underline{E})$
- where μ_H denotes the Mumford H-slope
- $H^{-1}(Q)$ and <u>E</u> denote respectively the Mumford *H*-semistable factor of $H^{-1}(Q)$ (of E) with the largest (smallest) H-slope



 $\{\mu_H(D) = \mu_H(\overline{H^{-1}(Q)})\}$ Wall Types for \mathcal{O}_S in t = 0-plane

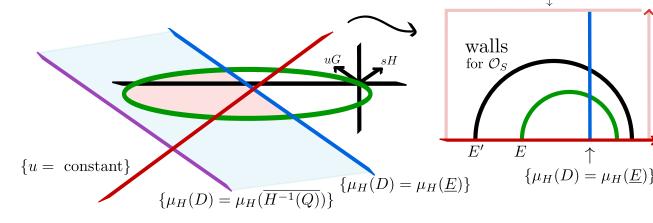
Tools for Proof

Rank 1 Case

Let C be the class of a curve. The wall for $\mathcal{O}_S(-C) \hookrightarrow \mathcal{O}_S$ is determined by the point in the t = 0-plane corresponding to C.

Bertram's Lemma

In [1] it is shown that in a plane $\{u =$ constant} where the wall for $E \hookrightarrow \mathcal{O}_S$ intersects the line $\{\mu_H(D) = \mu_H(\underline{E})\}$ or the line $\{\mu_H(D) = \mu_H(H^{-1}(Q))\}$, there is a wall above the one for E which is obtained by omitting \underline{E} (respectively $H^{-1}(Q)$)) from the Mumford H-filtration of E (respectively) $H^{-1}(Q)).$



Eric Miles

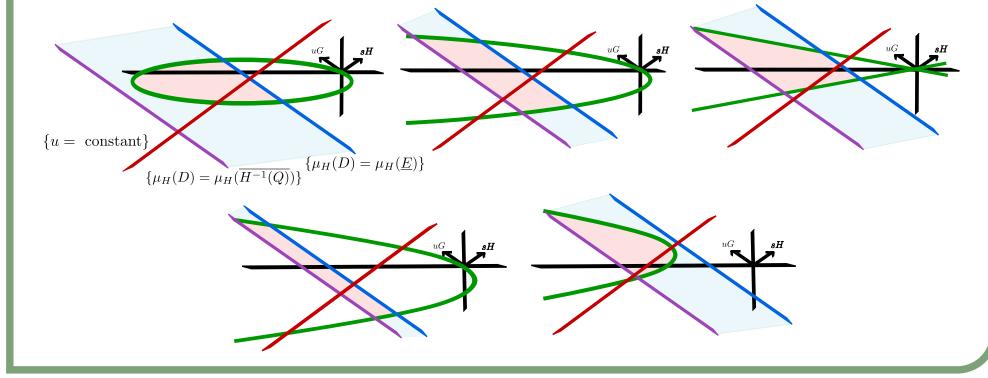
miles@math.colostate.edu

Sketch of Proof of Theorem 1

The proof is by contradiction via minimal counterexample.

Since S has no curves C satisfying $C^2 < 0$, the Rank 1 Case shows that no rank 1 E can destabilize \mathcal{O}_S . Now, suppose that at some σ there is an E with rank at least 2 satisfying $E \hookrightarrow \mathcal{O}_S$ and $\varphi(E) \ge \varphi(\mathcal{O}_S)$. We may suppose that no E'of lower rank satisfies this.

But, if we consider the wall types possible for $E \hookrightarrow \mathcal{O}_S$, we see one can always find a u such that Bertram's Lemma gives us an E' of lower rank than E which satisfies $E' \hookrightarrow \mathcal{O}_S$ and $\varphi(E') \geq \varphi(\mathcal{O}_S)$ at some σ' (see figure). This contradicts our assumption on E, and we are done.



Other Work

Theorem 2

If S has Picard rank 2 and has one irreducible negative curve C, then \mathcal{O}_S is destabilized only by $\mathcal{O}_S(-C)$.

Future Work & Interests:

- S with Picard rank ≥ 2 , general case
- Quiver regions for Del Pezzo surfaces
- Stability and birational geometry for 0-dim'l ideal sheaves

References

- [1] D. Arcara, A. Bertram, I. Coskun, and J. Huizenga. "The Minimal Model Program for the Hilbert Scheme of Points on \mathbb{P}^2 and Bridgeland Stability". Adv. Math., 235:580-626, 2013.
- [2] D. Arcara and A. Bertram. "Bridgeland-Stable Moduli Spaces for K-Trivial Surfaces". JEMS, 15(1):1-38, 2013. (appendix by Max Lieblich).
- [3] T. Bridgeland. "Stability Conditions on Triangulated Cateogories". Ann. Math., 166:317-345, 2007.
- [4] A. Maciocia. "Computing the Walls Associated to Bridgeland Stability Conditions on Projective Surfaces". http://arxiv.org/abs/1202.4587